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PREFACE

A description is presented of the development and preliminary results of the Wave
Climate Model of the Mid-Atlantic Continental Shelf and Shoreline  Virginian Sea!, a joint
effort of the Virginia Institute of Marine Science  VIMS! and the Langley Research Center
 LaRC!. A review af the shelf geomorphology is also presented, since the most important
influence on the wave climate of this shelf is the interaction between the ocean waves and
the various shelf relief elements.

This Wave Climate Model resulted from extensive modifications made by Victor
Goldsmith and Joseph M, Colonell of a wave refraction program developed by Dobson
 Stanford Univ. Tech. Rep. No, 80!. The resulting analytical model was adapted to the
Control Data 6000 computer systems at the Langley Research Center by Vincent R,
Roland and James R. Schiess. The map projection constructed at the Clark University
Cartography Laboratory is described by Norman T. Carpenter in appendix A. The
84 420 depths on this grid were accumulated through the efforts of Carolyn H. Sutton and
Gaynor Williams. Joseph M. Colonell of the University of Massachusetts, George Grant
and Maynard M. Nichols of VINS, and Theodore A. Talay and Andrew R. Wineman of
LaRC reviewed the manuscript.

This research was supported by Sea Grant Project No. 5-'72 to VIMS from the Office
of Sea Grant Programs, National Oceanic and Atmospheric Administration, Department of
Commerce, under Public Law 89-688, and the Commonwealth of Virginia.
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INTRODUCTION

As man has i~creased his usage of the continental shelves of the world, the need to

understand those physical processes affecting his planning and operations has grown con-
comitantly. For example, as population pressures have increased shoreline recreational
demands, the need for design criteria information for shoreline defenses has grown. As
the need for offshore power plants or port facilities has grown, so has grown the need for
that environmental information required for site selection and design. In both of the
cited examples and others, one of the most urgently needed information elements is that
of surface wave behavior on the continental shelf and fringing coastline.

In most engineering activities on the coastline and shelf, the designer needs to know
the temporal and spatial variations in wave energy so that he may select a site or design
a structure. Experience has shown that the acquisition of sufficiently verified statistical

information on waves in the open ocean is an enormously expensive and technically diffi-
cult undertaking. Even if adequate wave information is available for the deep-ocean
regions, it is necessary to manipulate this information so that ihe transformations which
waves experience in transit over the shelf are accounted for. Recent and future theoret-
ical advances in our understanding of wave generation, coupled with advances in remote
sensing technology, foster the expectation that adequate deep-sea wave iniormation will,
in the near future, be routinely observed. The purpose of this report is to supply a
detailed description of the development of a methodology to investigate the expected
behavior of waves as they pass over the continental shelf and the resulting wave energy
distribution along the coastline. This Virginia Institute of Marine Science  VINS!-Langley
Research Center  LaRC! Wave Climate Model supplies the interfacing function whereby
shelf and shoreline wave behavior may be calculated for any specified ocean wave input.

The model applies linear wave theory and shelf depth information so thai a first-
order approximation of the varying wave path and other parametric changes is obtained.
Because of the advent of high-speed digital computers such models have become increas-
ingly common within the last few years  refs. 1 to 21!. Basically all these models move
shoreward a single wave ray at a time across a grid of depths. Wave behavior is deter-
mined for a number of rays for each specific wave condition  i.e., wave period, height,
direction, and tide!. In fact, Bascom  ref. 22, p. 11! has correctly observed, "... the
theoreticians have become so bold as a result of the success of their complicated equa-

tions that there is danger the study of waves will fall entirely into the hands of men who
have never seen the sea." An attempt is being made to avoid this failing  discussed by
Bascom! in the present studies through comparisons of the results of the Wave Climate



Model with vertical aerial photographs of the complex sea surface  e.g., Saco Bay, Maine!,
wide application of the data to real-life problems, and adaptation of this model to future
developments in space technology  e.g., linking the Wave Climate Model to an Earth
satellite storm warning system!.

The Virginian Sea. Wave Climate Model differs from previous models in the follow-
ing important elements:

�! The model covers a very large geographic area of the continental shelf and
shoreline, Cape Henlopen, Del., to Cape Hatteras, N.C., an area of 20 000 square n. mi.
within a, single large grid. The importance of this approach is that the resulting graph-
ical display allows the investigator to visually integrate patterns of wave behavior which
would escape detection when smaller areas are used; as a result, regional differences in
behavior within the grid stand out. More detailed studies can then be made on a finer-
mesh grid in specific subareas by using the wave information from the large grid as
input to the smaller grid.

�! Distortions due to flat representations of the spherical Earth and problems
resulting from the fact that waves travel great circle paths were overcome by construct-
ing a Transverse Mercator map projection tangent to the Earth along the center of the
grid.

�! An improved understanding of wave behavior in the area of crossed wave rays is
now available from the theoretical studies of Chao  ref. 13! and Pierson  ref. 23!. These
studies have been applied to the interpretation of such wave phenomena as curved caustics
 which occur over continental shelf ridge and swale bathymetry! and straight caustics
 which occur directly over the margins of the deeply incised channels off the mouths of
the Delaware and Chesapeake Bays!.

The depth grid used utilized an input of 84 420 depths with a unit cell of 0,5 n. mi.
on a side. The specified wave input conditions considered nine initial directions for six
different wave frequencies, two wave heights, and two tidal conditions  for three approach
directions!. In all, 122 separate wave conditions were used with 19 different wave
parameters computed as output for the whole shelf and adjacent shoreline.

These wave data, which encompass waves propagated shoreward from deep water
using a 0.5 n. mi. depth grid, are being used  not reported herein! as input to four
smaller grids in order to illustrate the usefulness of these data to specific problems.

1 All shoreline and shelf geographic locations mentioned in the text are shown on
the bathymetric map in figure 1.
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Figure l. � Bathymetry of Virginian Sea  ref. 24!.



These grids, consisting of three "second
order" and one "third order," are described

schematically in sketch  a!. Output from
the first-order grid is used as input to the
second-order grid, and so on, the result

being an increasing density of depths as the
waves approach shallower depths.

Land 3d Deep
water

3d order
0,1 n. mt.
depth grid 2d order

0.25 n. mi.
depth torrid

let order
0,5 n. mt,
depth g r id

Sketch  a!

The three second-order grids are located in the vicinity of Wachapreague Inlet
�852 and 1934 bathymetry! on the Eastern Shore of Virginia and adjacent to the area
from Cape Henry, Va., to the Virginia-North Carolina. state line. A third-order grid
encompasses 6 n. mi. of shoreline along the resort area of Virginia Beach, Va. This
method allows sufficient detail of wave behavior along relatively short stretches of
coastline without overburdening the computer with the voluminous depth input informa-

tion required to propagate the waves shoreward from deep water.

Still another application of this Wave Climate Model conducted during the present
study is to delineate the importance of shifting wave patterns on the growth and develop-
ment of the largely offset coastal inlets along the Eastern Shore of Virginia. Two identi-
cally sized second-order depth grids have been made up for the area adjacent to
Wachapreague Inlet. One of these grids contains depths acquired in the 1852 offshore
survey of the area. The companion grid contains depths acquired in the most recent sur-
vey �934!, The question then raised  to be discussed later! is, did the wave climate in
1852, derived by inputting the 1852 bathymetric data, drive the barrier island-inlet sys-
tem towards its greatly changed present configuration  ref. 25!,

This report presents a description of the VIMS-LaRC Virginian Sea Wave Climate
Model, a review of the geomorphology of the Mid-Atlantic Continental Shelf, the wave
computations resulting from 122 wave input conditions, and a preliminary analysis of
these voluminous data. After detailed analyses of these data, the information will be
applied to problems which are either currently pressing or soon will be, The computed
wave information is being summarized by contouring the shelf and shoreline for impor-
tant computed parameters such as wave height, wave energy, bottom orbital velocity,
shoreline power gradient, and other parameters for important and commonly occurring
wave conditions. Shelf areas of "confused seas" are being highlighted and shoreline

areas of wave energy noted. Thus, several techniques and methods will probably be
developed and evaluated for using the voluminous output from the Wave Climate Model in
order to increase its usefulness to managers of continental shelf and shoreline resources.



SYMBOLS

azimuth, degAZ

distance between adjacent wave raysb,P

wave celerity

water depth

acceleration due to gravity

wave heightH

coefficient of refractionKr

coefficient of shoalingKs

wave number, 2v/L

wave length

wave period

mean low waterMLW

SSMO summary of synoptic meteorological observation

Universa.l Transverse MercatorUTM

Subscript:

initial

angle between successive wave-front positions  or ray orientations! and
respective adjacent bottom contours



ANAI YTICAL MODEL

Development History

Early adaptations of computerized techniques to the study of waves refracting over
nonbreaking regions were made by Mehr  ref, 26! and Griswold  ref. 27!. Harrison and
Wilson  ref. 28! expanded Griswold's work into a computer program which produced a
wave orthogonal trace based upon a grid of wave speed in a study of the area off Virginia
Beach, Va. Such a grid of wave speeds is awkward because it requires a new grid to be
computed in the area of interest for each wave period, as well as for each wave direction.
Also, computations of wave intensities are difficult from a grid of wave speeds. Wilson
 ref. 2! used a grid of depths which fitted a linear surface computed from four adjacent
depths to calculate the path of the wave orthogonal. Again wave heights were not calcu-
lated. Roberts  ref. 29! and Keulegan and Harrison  ref. 9! applied refraction techniques
to the study of tsunamis in order to explain the intense concentrated destruction from a
tsunami at Crescent City, Calif.

Dobson  ref. 4! fitted a quadratic surface to a, grid of 12 adjacent depths to calculate
wave heights. A refraction program based on Dobson's program was adapted to the
CDC 3600 computer and associated CalComp plotter at the University of Massachusetts
 refs. 7 and 30!. These studies showed a strong correlation between the calculated ocean
wave refraction patterns, observed wave patterns, and short-term shoreline erosion meas-
ured in the field over a 3-year interval  ref. 31!. The spatial variation in shoreline

wave energy patterns was determined from wave orthogonal spacing along the shoreline
and wave height variations for important wave approach directions. However, because
the effects of bottom friction were not included in the wave intensity calculations, the cal-

culated wave heights were found to be reasonable in some cases but too large in others.
This aspect was improved by adopting routines developed by Coleman and Wright  ref. 11!
based upon equations for calculating bottom friction developed by Putnam and modified by
Bretschneider and Reid  refs. 32 and 33!, Th's resulting program, with some additional
improvements, has been adapted to the Control Data.  CDC! 6000 computer systems at the
Langley Research Center and associated software.

Theoretical Review

Wave theory applied to wave refraction and its limitations has been succinctly sum-
marized by Colonell, Farrell, and Goldsmith  ref. 18!, from which this section has been
largely drawn.

The process by which waves are slowed, shortened, and steepened as they travel
into progressively shallower water is called shoaling. Typically, shoaling does not occur
uniformly along a wave front so that, as the wave celerity decreases in accordance with



its shorter wave length, the wave front bends as a result of the variations in celerity
along the front. This combination of shoaling and wave-front bending is called refraction
and, for purposes of analysis, is regarded as analogous to its optical counterpart in the
refraction of light rays. With the assumption of small wave steepness  amplitude/wave
length!, linear water wave theory  ref. 34! provides the following expression for the
celerity of a progressive sinusoidal wave traveling through water:

C = � tanh
gL 2md

2m L

Rearrangement of equation  I!, with C = L/T, gives the following familiar expression
for wave length:

gT 2~d2

tanh
2m I

�!

Because the hyperbolic tangent tends toward unity for large arguments  i.e., "deep"
water!, it is apparent that for sufficiently large depths the wave length  and consequently,
wave celerity! is a function only of the wave period. It is easy to show that deep water
can be assumed with a maximum computational error of less than 0.4 percent when the
depth exceeds only one-half wave length. For all conditions except those along the top
boundaries of the study area, the one-half wave-length criteria would have been sufficient,
However, because of the shallow shelf in this boundary region, deep water was assumed
to be greater than one-fourth wave length; thereby, the initial maximum possible compu-
tation error was increased to 8 percent.

The effects of shoaling and refraction can be estimated by linear wave theory, For
example, the propagation of surface waves into shallow water is analyzed by consideration
of the wave energy between two vertical planes which are orthogonal to the wave crests
and which intersect with the surface to produce wave rays. Energy is assumed not to be
transmitted along the wave crest; thus, it is not transmitted across wave rays. If it is
also assumed that the wave period is constant and that there is no loss or gain of energy
from reflection, percolation, or bottom friction, then linear wave theory provides the
well-known result,

H
= KrKs

Ho

The coefficients of refraction and shoaling are given by

I/2
bo

Kr =
b

�!



and

I/2
2 cosh kd

2kd + sinh 2kd
�!

In this report, the effects of bottom friction are incorporated in H. Koh and Le 1Vlehaute
 ref. 35! have calculated the transformation of progressive waves from deep water to
shore using first-, third-, and fifth-order theory, with results differing by only 5 percent.

Wave refraction diagrams.� As a surface wave travels into shallower water the

bottom exerts an ever greater influence on it, because of the effect of depth in the deter-
mination of wave celerity  eq. �!!. For example, at a depth equa1. to one-eighth wave
length, the wave is slowed down to 65.6 percent of its deep-water velocity. When the
crests of a train of waves are not parallel to the bottom contours  lines of constant

depth!, the forward portions of the wave crest decrease in speed in such a way that the
crests tend to become alined with the bottom contours.  See sketch  b!.! Wave refrac-
tion diagrams are used to determine the way in which a wave of given period will respond
to the bottom topography.

Sketch  b!

The primary objective in wave refraction analysis is to compute the shoaiing and
refraction coefficients  eqs. �! and �!! and thus to determine the variation of wave
heights  eq. �!! in shoaling water and to deduce therefrom the specific kinematic or
dynamic property of the waves that is required for any given application. For example,
wave particle velocities and accelerations are required for wave force computations,
whereas variations in wave energy along the shoreline are utilized for sediment transport



and coastal process investigations. In most cases, such deductions of wave properties

are made by utilizing the results of linear wave theory.

According to Wiegel  ref. 36, p. 155!, the procedures for the preparation of wave
refraction diagrams have existed at least since 1937. A good example of such an early
effort is reference 37. The diagrams are constructed in either of two ways:

�! Wave-front method: This method is essentially a map of the successive posi-
tions of a wave front at given time intervals as it moves shoreward. To determine wave
height variations along the fronts, it is necessary to construct wave rays  or orthogonals!
which are everywhere perpendicular to the wave fronts.

�! Wave-ray  ortho onal! method: This method is a technique which allows the
wave rays to be drawn directly, without benefit of the wave fronts, by determination of
the trajectories of selected points on a wave front.

Both methods are based on the premise that the water wave refraction phenomenon is
analogous to optical refraction to the extent that Snell's law is applicable; consequently,
it is assumed that

sin e2 C2

sin Ql Cl
�!

where a1 and a are the angles between successive wave-front positions  or ray ori-
2

entations! and the respective adjacent bottom contours, and wave celerities  function of
depth and wave period! for these positions are denoted by Cl and C2. Preparation of
a wave refraction diagram by either method is basically a step-by-step application of
equations �!, �!, and �! to a wave of prescribed period and initial deep water direction
over a specified bottom topography. Waves are terminated as they reach the shoreline,
that is, when the wave height reaches a value of 0.78 water depth.

The advent of modern digital computational facilities has made manual construction
of wave refraction diagrams virtually obsolete. Although the wave-front method is the
usual technique for manual construction, the wave-ray method is generally regarded as
more amenable to the automated preparation made possible by the digital computer.
Wave refraction diagrams for the investigations reported herein were computed by means
of a program based on the Stanford University wave refraction program  ref. 4!, which
was adapted for use on the CDC 6400 and 6600 computer systems and the associated
CalComp plotter at the Langley Research Center. This program utilizes the wave-ray
method and requires as input information a grid of bathymetric data. for the area of inter-
est as well as definitive wave characteristics such as height, period, and initial direction.

Validity and limitations,� Although there is reasonable confidence in the gen'ral
validity of wave refraction analysis procedures just briefly described, it should be empha-



sized that the underlying theory has bounds to its validity which are exceeded in most
routine wave refraction computations. As noted previously, linear wave theory is pred-
icated with such assumptions as sinusoidal wave forms, small wave steepness, and con-
stant water depth. Casual observation is sufficient to verify that ocean waves are not
sinusoidal and that they become steep as they approach the shore, However, the "irreg-
ular" sea surface may be looked upon as a complex combination of sinusoidal waves.
Also, the assumption of constant depth for application of linear theory is not strictly
correct.

Another aspect, the proper interpretation of crossed wave rays  or fronts! in the
refraction diagrams  i.e., caustics!, such as those in many of the wave refraction dia-
grams, does not appear to be the problem it was once thought to be. Chao, in a thorough
series of theoretical  refs. 38 and 39!, wave tank  refs, 40 and 41!, and continental shelf
 refs. 13 and 42! refraction studies of this caustic phenomena, has made the following
conclusion for such wave refraction studies  ref. 42, p. 20!: "The rays, after escaping
from the caustic regions, eventually follow the continued ray path and the wave conditions
are determined by the p factor just as if no caustic had occurred except that there has
been a. phase shift, which is unobservable because of the randomness of waves in nature.
These conditions eliminate the necessity of the evaluations of the waves near a
caustic...." Although some wave height changes may occur in the waves that pass
through a caustic region, theoretical and wave tank studies  ref. 41! suggest that such
changes seaward of the zone of breaking waves may be minimal and well within the bounds
set by other limiting factors such as depth information. Farrell  ref, 43! was able to
perform an impromptu field evaluation of the wave refraction computations that he had
performed in conjunction with his research on the mechanisms which are dominant in
determining the geomorphology of Saco Bay, Maine. Figure 2 provides a direct compari-
son of a wave pattern observed in a vertical aerial photograph in Saco Bay and the com-
puted refraction diagram. The i~put for the diagram was based on the actual wave con-
ditions as closely as they could be determined from the photograph. The qualitative
correlation between photograph and diagram suggests that the computational procedure is
reasonably valid for this situation which is characterized by a complex shoreline and
irregular bathymetry. Field measurements of wave directions and heights need to be
made downwave from the region of caustics in order to verify these and other qualitative
observations and the theoretical considerations of Chao. One must also recognize that
this comparison is for a single wave condition at a single site over a relatively small
geographic region, Higher order wave interactions may possibly cause significant effects
in the far-field region. However, very little field data on the effects from caustics and
other wave interaction phenomena are available in the literature.

Steady-state conditions are assumed for the prese~t model. Calculations are made
for two tide heights, mean low water and spring high tide, which are assumed constant

10



SACO BAY AZ = 135 T = 8,0 sec HT = 0.3 m � ft! TIDE = 0.0

Y-axis, n. rni. 6.25
7,50
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i 3.75
5.00

Figure 2. � Comparison of vertical aerial photograph of Saco Bay, Maine, and wave
refraction diagram computed for T = 8.0 sec and AZ = 135o,  From ref. 12.!



over the region of the model. Constant tide height is a traditional assumption for wave
refraction models of small geographical regions where wave transient time across the
region is small compared to a tidal cycle. For wide shallow continental shelves, waves
approaching at an angle may travel 100 n, mi. in areas with depths less than � L; the1

transient time for these longer waves may be as much as 2 hours. In such cases, a

time-variable tide height may be required to correctly represent the wave climate. Such
a complication may be unnecessary from a practical viewpoint, however. if tide changes
cause only small effects on the wave patterns. For example, in most of the Virginian Sea,
where the mean tide range is approximately 1.1 meters �.5 feet! the change in sea-level
elevation would be about 0.3 meter � foot! during the maximum time of wave transit

across the shelf, This study examines the magnitude of change in wave patterns for the
maximum tidal range of 1.2 meters � feet! in an effort to provide guidance for future

research.

The present model follows traditional practice in that no winds are assumed over
the region. For small regions where short wave transient times prevail, wave perturba-
tions caused by surface winds are small, For larger regions with longer wave transient
times, "headwinds" may possibly have a significant effect on the dissipation of wave
height, However, very little is known about the effects of winds on waves; neither the
effects of winds nor currents are considered in this study.

The theoretical foundation to combat the inherent shortcomings of linear wave

theory for refraction computations is provided by Stoker  ref. 44! and an excellent review
of higher order wave theories by Dean  refs. 45 and 46! and Bretschneider  ref. 32! can
provide guidance for selection of a snore suitable theoretical base for any specific
problem.

Despite these and other valid criticisms of conventional wave refraction computa-
tions, it can be argued that the uncertainties associated with the input data required for
these computations  i.e., depth and wave information! are large enough that the incorpo-
ration of such theoretical refinements is generally not warranted for most practical
applications, However, there remains a need for field verification of computational
results, especially for problems involving fairly irregular bathymetry. The consider-
able expense of such an undertaking is of course the major deterrent to its performance.
Nevertheless, there are occasional qualitative field verifications that serve to inspire
confidence in the analytical procedures  refs. 31, 43, and 25!.

Clearly, substantial caution must be exercised in the interpretation of wave refrac-
tion diagrams that are subject to these limitations; however, the limitations themselves
should not be regarded as implacable obstacles to achieving a better understanding of
coastal hydraulics through the utilization of wave refraction diagrams. Although these
diagrams are not data in the usual sense, they can provide information on wave behavior

12



that is a useful complement to actual i'ield investigation. This information is essentially
qualitative in value but, within the limits imposed by linear wave theory, some quantita-
tive information is also gained without the expense of costly field collection of wave data.

Other problems to which a wave analyst must be alerted include the role of Earth
curvature in determining ray travel directions  ref, 13!, the shortcomings of representing
actual ocean waves by theoretically uniform wave trains of distinct period  refs. 47
and 48!, and the problem of extending waves landward of the breaker zone  refs. 49 to 51!,

Map Projection

Theoretical development.� The definitive mathematical work on map projections
was computed by Tissot  ref. 52!. This work was applied to standard'map projections by
Adams  ref. 53!, Deetz and Adams  ref. 54!, and Army Map Service  ref. 55!. A qualita-
tive description of map projections can be found in references 56 to 58, and a more math-
ematical description in reference 59, Application of map projections to problems of
ocean wave propagation have been discussed by Hardy  ref. 60! and Adamo, Baer, and
Hosmer  ref. 61!. The Transverse Mercator map projection specifically constructed for
this study used a computer program developed by the U.S. Central Intelligence Agency
 ref. 62!,

Virginian Sea map projection.� Ocean waves travel great circle paths across the
spherical Earth. Since wave refraction diagrams are flat representations of portions of
the round Earth, a certain amount of distortion is normally represented in such presenta-
tions. Where the areas involved are small and close to the equator such distortions are
minimal. However, for a large area  e.g., Virginian Sea! such distortions can be quite
critical. For example, 1 of longitude is approximately 1- n. mi. wider at latitude 35 N

2

than at 39 N.

Whereas Chao  ref. 38! chose to use spherical coordinates ba.sed upon latitude and
longitude instead of Cartesian coordinates for computing the path of the wave ray, the
present study employed a specially constructed Transverse Mercator map projection for
solving the round Earth problem. The projection, which has a square grid superimposed
on it, was chosen because of the need for a common grid in assembling the voluminous
but detailed depth information from many sources,

The Mercator projection takes the form of a cylinder which contacts the surface of
the Earth along the equator. Latitude, longitude, and surface features are transferred to
the cylinder in such a way that the angular relationships around each point are preserved
without deformation. Such a projection is called conformal. The cylinder is then
unwrapped to form a flat map. The Universal Transverse Mercator has the same char-
acteristics as the standard Mercator except that a meridian has been made the standard
line instead of the equator. The extreme areal exaggerations that occur with increasing
distance from the standard line are avoided by limiting the extent of the standard Mercator



projection to 3 of longitude on either side of the standard line and using a separate projec-
tion for each of 60 zones which cover the whole circumference of the Earth. As a result

the maximum areal exaggeration is one in a thousand over the whole width of one zone.

The projection prepared herein differs from the standard UTM in three ways:

First, to simplify computation it is based on the sphere of equal area rather than the
spheroid  which is an ellipsoid of rotation and a closer mathematical approximation of
the somewhat irregular shape of the Earth!. Although the diameter of the spheroid is
smaller at the poles and larger at the equator than that of the sphere, they approximate
each other quite closely, within 1/4 of 1 percent, in the middle latitude for which the
Virginian Sea projection was constructed. Second, the nominal scale of this projection
is true at the central meridian of 75 . Third, the rectangular coordinate system super-

imposed on the UTM has its origin on the equator 500 000 meters � 640 420 feet! to the
west of the central meridian, whereas this coordinate system is in feet with an origin in
the northwest corner of the area plotted. Not one of these differences has any effect on

the use for which this particular projection is intended.

A detailed description, including the strengths and limitations, of this map projec-
tion constructed at the Clark University Cartography Laboratory by Norman T. Carpenter

is given in appendix A.

D at a. Input

Depths,- The most important input to the Wave Climate Model is the depth informa-
tion. The depth information used in this study was taken directly from original Hydro-
graphic Sounding Sheets  i.e., boat sheets!. These are charts with depths written along
the survey lines  refs. 63 and 64!. Though these depths have all been tidally corrected to
depth at the time of mean low water, no interpretation or interpolation has been used; that
is, these are the original surveyed depths. A location map of 60 U.S. National Ocean

Survey  formerly Coast and Geodetic Survey! Hydrographic Sounding Sheets and other data

used in this study are given in figure 3.

Despite the wide usage of these original sounding sheets, few sources of written
information exist on the accuracy criteria desired and met in these surveys as well as
the corrections employed or not employed and their justifications. In order to fill this

critical information gap a study on the accuracy of the depth and navigational positioning
has been made by Sallenger, Goldsmith, and Sutton  ref. 65!. Figure 4 which is from this
study illustrates the different criteria set by the U.S. Coast Survey and its successor
agencies for surveys of different dates. The depths at which waves of the periods used
in this study are first significantly refracted by the sea floor irregularities are plotted
over the Coast Survey accuracy criteria to give an indication of the depth errors influ-
encing the wave climate modeL Only four of the charts which were used in the depth

14



 a! Location map. Numbers refer to sounding sheets.

Figure 3.� Location map and index of U. S. National Ocean Survey hydrographic
sounding sheets of Virginia Continental Shelf used in preparing depth data.
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accumulation were surveyed prior to 1915, and only three of these charts were surveyed
prior to 1870. These charts  prior to 1915! used for the model were surveyed where the
depths did not exceed 85 feet.
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 b! Accuracy criteria.

Figure 4.� Sounding error criteria for NQS  C&GS! Sounding Sheets from reierences 64
and 63 as compiled in referent e 63. Depths at l /4 wave lengttt for wave periods
used in this study are also shown,
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Approximately 100 000 of these original uninterpolated depths were transferred
from the 61 sounding sheets and other data, using latitude and longitude, onto a Trans-

verse Mercator map projection 2,4 by 1.2 meters  8 by 4 feet!, specially constructed for
the present. study. Then 84 420 of these depths were read from the map grid in lines at
0.5 n. mi. intervals spaced 0.5 n, mi. apart and punched on cards,

In order to provide a check on this depth accumulation process, a computer pro-
gram was written which plotted 420 east-west bathymetric profiles, Seven typical pro-
files are illustrated in figure 5. By adjusting the spacing between the profiles it was

38 30' 0 0
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0 0
37 30'

0 0

0 0
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0 c
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00' -r 0

0 035 30
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ZOD 656
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0 r4ta rree, n, mr,

I'ignre 5, � Seven of the 420 computer-plotted east � west bathymetric profiles
selected at intervals of 30 minutes of 1atitnde.

possible to compare both adjacent data points and adjacent profiles. Thus, mispunched

numbers, computer cards out. of place, and incorrectly read depths, which may be

expected to occur within a large 84 420 depth array, could be visually located. Correc-
tions were then made on a point-by-point basis by reference to the original Hydrographic

Sounding Sheets. This comparison was repeated until all the depths on the tape were

determined to be correct.

An addendum to this study, a detailed map of the Virginian Sea, was made from
these accumulated depths which were contoured at 3.7-meter �2 foot! intervals out to
150 meters �92 feet! and at 30.5-meter �00 foot! intervals out to 305 meters
�000 feet!.  See ref. 24,! A black-and-white copy of this 1.22- by 0.61-meter � by
2 i'oot! multicolored map, with the location names used in this report, is shown as
figure 1.



Once the data had been checked, they were input on punch cards, but the number of
errors that occurred due to the necessary handling of these 5628 cards indicated that a
more reliable system was necessary. The data were then transferred to magnetic tape,
but even the tapes were subject to handling errors. The system finally chosen was to
record the bathymetry on a data cell; this proved to be the most reliable of the three
techniques.

An additional test was performed to determine whether the density of depths  i.e.,
0.5 n. mi. spacing! was sufficient to accurately portray a region of this bathymetric com-
plexity with respect to the regional refraction patterns. It was determined that, by using
an existing grid  ref, 31! on a much smaller region, very little difference would exist in
refraction patterns between this depth density and one of approximately half the spacing
 which would require approximately four times as many depths!.  However, since more
detailed studies in shallow depths and along the shore require an increase in depth den-
sity, additional small grids are being used in areas of such studies. The output from the
larger, regional, first-order grid is used as input at the seaward intersection with the
smaller grids.!

The equations used in propagating the wave ray across the grid of depths is
described by Dobson  ref. 4, pp. 14 to 16! in terms of Cartesian coordinates and time.
Essentially, the ray is propagated forward as a function of the celerity, which in turn is
related to the depth coordinates. Start from a known point in a given initial direction and
propagate the ray forward in a series of small steps by using a, compl x iteration proce-
dure that keeps the ray curvature within arbitrary set bounds, If the curvature falls out-
side these bounds, such as in areas of complex high-relief bathymetry, the ray is termi-
nated and a message printed. Since the likelihood of many of these small steps falling
exactly on the grid points is small, a depth interpolation procedure is required. Dobson
 ref. 4! used a second-degree polynomial employing the method of least squares to
describe the local surface of fit for 12 adjacent depths. This method is an improvement
over a linear surface fit  computed by Wilson  ref, 2!, May and Tanner  ref. 20!, and
others! in that the ray separation factor b can be calculated; b is needed far deter-
mining the wave intensity. A statistical test is run on the fit of the quadratic surface to
the local depth configuration. An unrelated test of the ability of such surfaces to accu-
rately portray the original configuration determined that 12 depths was the optimum num-
ber and configuration to use in such a quadratic surface.  See ref. 66.!

These complex mathematical routines are only as good as the input depth informa-
tion and there are still numerous U.S. coastal areas  including much of the depth data
used in this study! whose latest depth information predates electronic navigation and pre-
cision depth records,  See ref, 65.!



TABLE I.- INITIAL DEEP-WATER WAVE CONDITIONS

Tl.de Wave heightWave ch rect ion,
deg

Wave periods,
sec

4,6,8,10

4,6,8,10,12,14

4, 6, 8> 10> 12, 14

0,61, 1.83

.61, I..83

.61> 1.83

2,6

22. 5 2,6

45 NE 2,6

Thus, a "library file" of a wide variety of wave conditions is accumulated that can

be used in conjunction with other geological, biological, and chemical studies of the shelf

and shoreline and as an aid to resource managers charged with choosing sites for off-

shore ports and shoreline defense structures.

One might well ask the question as to why this "scatter-gun" approach with respect

to wave input conditions. Why not zero in on just the most significant waves for calcu-

lating the wave parameters? There are two reasons why a wide variety of wave condi-

tions is calculated. First, anyone can testify to the almost infinite variety of wave con-

ditions that may occur over a long span of time. Second, data for determining the

precise percentage of time that a given wave condition will occur are presently unavaila-

ble in most areas. The large frequency of conditions is also needed in order to calculate

3Waves propagating landward from deep water will be slowed to 0.996C at
d = � Lo. Similarly at d = � Lo the waves are traveling at 0.92Co and at d = � Lo.1

2 4 o>
8

they are traveling at 0.66CO. Therefore, the slowing down of the wave is a gradual
process, and for the purpose of starting the 14-second waves, deep water was considered
to be where the waves were not appreciably affected by the bottom or at depths = � Lo.1

4

20

Wave conditions.� The second major input to the Wave Climate Model was a wide

variety oi' wave conditions. Approximately 200 to 250 wave orthogonals were propagated

shoreward from deep water~ for each of 122 wave conditions. The wide variety of wave
COnditianS, ShOWn in table l, WaS ChOSen in Order tO mOdel aS Inany different COmbinatiOnS

as possible of wave period, direction, height, and tidal conditions from amongst the infi-

nite variety of conditions that occur in real life.



Such data come from one of four sources; �! wave measurements by instruments

in deep water, �! wave measurements by instruments in shallow water and along the

shoreline  i.e,, on piers, anchored buoys, etc.!, �! ship wave observations compiled by
U.S. Naval Oceanographic Office by 10 squares called Marsden squares, and �! wave
hindcast calculations, None of these methods has produced data considered adequate for

this area.

Data from source �! are quite rare and, where available, are generally of insuffi-

cient duration to be statistically valid. Sum~aries of shallow water wave measurements
calculated from coastal wave gages were found to bear little relationship to individual
shipboard wave height and period observations off the east coast of the United States
 ref. 68, p, II-679!, as shown in figure 6. These authors further concluded that if ade-
quate dat' were available from shipboard wave observations, wave refraction methods
would be useful in determining shallow water and shoreline wave parameters. Further-

more, no procedures presently exist for propagating waves seaward, which use wave

parameters determined from coastal gages as input.

12
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-2 10 ' 10101010

0nnn< n1 �ni rlnr thnn in0innlnd

Fig~re 6.� Comparison of cumulative shipboard wave height distribution  Marsden square!
with Atlantic City, N.J., gage data. Numbers in parentheses are number of observa-
tions in that subsquare  SS! ~  From ref. 68.!

Ship wave observation data are not the final answer either for determining the per-
centage frequency of occurrence for a given wave condition, as there are several inherent
biases built into the present data collection system. Several of these biases, such as the

21

parameters such as the mean wave height at a shelf location and the total shoreline wave
energy along a stretch of coast during an average year. This could be easily calculated
by summing up, based on frequency of occurrence, the data for a given location from each
of the calculated wave parameters. Also, in order to determi,ne the effects of storm
waves along a shoreline, the sequence of weather fronts and resulting storm-generated

waves is needed  ref. 67!.



awkward computer forms, are discussed by Harris  ref. 69!. Another bias is suspected

from the interpretation of summary graphs of ship wave observations from the Marsden

squares adjacent to Cape Cod, Mass. t'ref. 3i! and the southern portion of the Virginian
Sea  fig, 7!. In these two area summaries, the dominant waves on an annual basis appear
to approach from the west, despite the proximity of land to the west and more than

3000 n. mi. of ocean to the east. One possible explanation for this suspected bias is

related to the fact that the ship wave observations are recorded as part of a voluntary

1S 21
cec

I

15 21
cec

Percent2 ~ ly Apct Sept Oct Npv-Dec

 a! Direction as a function of period.

Figure 7.� Harsden square wave information from Narsden 5o subsquare 116 � 55,



program; ships tend to avoid extreme wave conditions, and when they do encounter severe
conditions, the assigned observer might find that he has more important duties to perform
than filling out wave forms. Nevertheless, ship wave observations appear to be the best
information available at present for summing up individual wave conditions. These data
have been used with some success in making littoral drift calculations along the coast of
Florida  ref, 70!.
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The final method used in summarizing wave conditions is wave hindcast calcula-

tions. All these methods are discussed elsewhere  refs. 32 and 71!. Hindcast calcula-

tions using the Bretschneider-revised Sverdrup-Munk  significant wave! method has been
computed for four stations along the U.S. East Coast, including one adjacent to the

Chesapeake Bay entrance  fig. 8!, by using data from weather stations for the 3-year

period, 1948-1950  ref. 72!. Note the large discrepancy between the ship wave observa-

tions and this wave hindcast data  figs. 7 b! and 8!, Important considerations in this dis-

crepancy are the two major assumptions used in wave hindcasting: �! deep water for
360o around the hindcast station and �! the meteorological conditions in the 3-year

period, 1948-1950, are representative of Iong-term weather conditions.

%,~t~ m . !	,
4.3 1�! t>>td ~
3.3 tv 8.3 n2
3,1 t �.i ttt!
2,1 tu 3.1 t8 t
I,t! t.'> 2.» ~8 t
t.2 ta 1.8 'i t
 !.ti tv I. 2',2 t
Ltt» t!!an 0,8

C:
les
�.

Figure 8. � Deep-water wave hindcast data adjacent to Cltesapeake Bay entrance.
 From ref. j2.! tttave rose showing percent of time waves of different
heights occur from each direction.

In order to determine the range of parameters used in this study, the wave condi-

tions in table I were checked against the hindcast and Marsden square data and were

found to represent 99.11 percent of the hindcasted wave conditions calculated for the
Virginian Sea area by Saville in reference 72  table II! and greater than 59.4 percent of the
ship wave observations reported in the Marsden square summary for Marsden subsquare

116-55 which covers the Virginian Sea area  table III!. Most of the remaining observed

wave conditions �9.2 percent! were from the west; therefore they were not deemed sig-

nificant for this study because of the limiting fetch and other assumptions in this study.

24



3-year period, 1948-1950; from reference 72]I. - ~

Percent frequency of occurrence at�
AZ

T = 14 sec= 8, 9 sec T = 10, 11 sec T = 12, 13 secT =- 6,7 secT = 4, 5 sec

0.030.03N

.8040. 060.0460.182. 182 0. 334NNE

22.6783. 85 3. 255,811. 81.958NE

5. 26 43. 2911. 37 12.65.611. 25ENE

18. 521.32 1.263. 525. 58 5. 351. 49

5. 84.56 ,552.13.87ESE

.59

.30

.09 I

.85 4.28.5544 1.32

.21 2.09.24.85SSE ,32

1. 58. 14 .03.64

tTotals 13, 81 99.11211.6124.62624.80218.2745. 99

TABLE III.- SHIP WAVE OBSERVATIONS

'Marsden Subsquare 116-55
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TABLE II.� HINDCAST WAVE DATA FOR OCEAN ADJACENT TO

CHESAPEAKE BAY ENTRANCE



Data. Output

For each of the 122 wave conditions  e.g., combinations of wave directions, periods,
heights, and lunar and storm tides!, two kinds of computer output are generated:

�! The wave refraction diagrams show the directions of the waves as they are
propagated landward under specific wave input and depth conditions. Instead of wave
fronts, these diagrams display wave rays  i.e., orthogonals! which are everywhere per-
pendicular to the wave fronts. Seventy of these wave diagrams are presented in appen-

dix B  figs. Bl to B70!.

�! The computer printout gives the computations of different wave parameters at

intervals of 609.6 to 914.4 meters �000 to 3000 feet! along each wave ray. The rays

were input in deep water at a spacing of 1 n. mi.; approximately 200 to 250 wave rays
were used in the wave computations for each condition. The parameters printed for each

of the conditions in table I are

�! Angle of wave approach

�! Depth

�! Wave length

�! Wave celerity

�! Refraction coefficient

�! Shoaling coefficient

�! Wave height  including effects of bottom friction!

 8! Maximum horizontal component of wave orbital velocity at the bottom

 9! Maximum horizontal component of wave orbital velocity at middepth

�0! Total wave energy

�1! Longshore wave energy

�2! Wave steepness

�3! Group velocity

�4! Total wave power

�5! Longshore wave power

and the parameters printed when the wave reaches shore are

�6! Total wave power gradient

�7! Longshore wave power gradient

�8! Longshore drift current velocity

�9! Longshore sediment drift  five different equations!
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Parameters �! to �! were computed based on reference 4, parameters  8! to �7!
were from reference 36, and parameter �8! is from reference 34. These computations
may generate as many as 50 000 values for each wave parameter along each ray for each
wave condition. These data may be used to contour the sea floor in order to delineate
areas of high wave-induced current motion and wave energy as well as areas of "confused
seas." Parameters  8! and  9! are used in computing the drag and inertial components of
wave forces, and parameters �6! and �7! are used in delineating areas of wave energy
concentration  i.e., areas which may experience larger rates of wave scour or beach

erosion!.

Longshore sediment drift was calculated by five different equations taken from ref-

erences 73 to 78. There was an extremely large scatter in longshore drift values as cal-

culated by the different equations, with most results appearing to be many times too
large. These results support the widely recognized need for a significantly greater

understanding of longshore processes.

Special Computer Requirements

The application of the refraction model to such a large geographic area is unique
and was made possible by the capacity to store a large amount of data. Storage require-

ments for this study were 330 000 octal locations. Of these, approximately 300 000 loca-
tions were required for the bathymetric data, and the remaimng 30 000 locations were
required for the program, plotting, and tape generation routines.

The data were run in sets with a set consisting of one tidal height, one wave direc-

tion, and six wave periods. The approximate computer requirements for a set were

Total computer storage field length  octal! ..
Computer time for the CDC 6600 computer, sec

Operating system calls .

LaRC computer system cost

. 330 000

1 250

47 000

$650

A total of 21 sets were run. A total cost including program adaptation and checking was

approximately $30 000.

27

A number of subsequent modifications have been made to the computer model but

were not incorporated at the time this study was made. Among these was a method which

can reduce the computer storage requirements to one-fourth of that presently required.
This method is called the random-access method, and a peripheral disk is used to store

the data in modules which can then be retrieved individually; thus, data not required are

bypassed  ref. 79!. This method also reduces cost by approximately 65 percent and
should allow greater use of the program with computers of more limited storage capacity.



SHE LF GEOMORPHOLOGY � A REVIEW

Ever since Uchupi's detailed studies of the continental shelf along the east coast of
the United States  ref. 80!, an increasing number of studies have focused attention on the
various shelf relief elements. Much of this work is discussed in reference 81. Refer-

ences 82 to 117 are examples of studies which are of direct interest to the Virginian Sea
area, Also, references 118 to 139 are studies of significance to the origin of the shelf
geomorphology of the Virginian Sea area. A classic study on the shoreline effects result-
ing from offshore changes is Jordaan  ref; 140!.

Many of these studies are aimed primarily at shedding light on the controversy
concerning the origin of the shelf relief elements � that is, are these features relict or
presently hydraulically active, or a combination? If relict, how much have they been
modified? It is not the direct purpose of this study to explore this controversy, but
merely to point out the importance of complex interactions between the ocean waves pass-
ing over the shelf and many of these shelf relief elements, which result in a nonuniform
wave energy distribution over the shelf and along the shoreline. This relationship is dis-
cussed in detail in the section "Study Results." In this section, the purpose is merely to
elaborate on those geomorphic features which are significant to the wave climate of the
Mid-Atlantic Continental Shelf and Shoreline. These features are shown in the bathymet-

ric map of the Virginian Sea  fig. 1! and also in figure 9, a three-dimensional computer

projection of the depth data.

Seven east-west bathymetric profiles at intervals of 30 minutes of latitude taken

from the 0.5 n. mi. depth grid is shown in figure 5. Two important aspects of the profiles
for this study are the great width and relatively shallow nature of this portion of the con-
tinental shelf. The abrupt increase in gradient at the shelf edge is between depths of 61
and 91 meters �00 and 300 feet! and is located as much as 60 n. mi. from shore. The
distance from shore at which the ocean waves of different period begin to be appreciably

affected by the sea floor is shown in figure 10. Thus, a great expanse of the continental
shelf, and superimposed relief elements, is available for influencing ocean wave behavior.

A closer examination of these profiles  fig. 5! and the detailed bathymetric map of
the sea floor  fig. 1! reveals that the shelf surface is not a. smooth plain but instead con-
sists of numerous irregularities. These irregularities may be divided into two groups:

�! Large-scale morphogeometry consists mainly of erosional forms cut into the
shelf such as terraces, channels and valleys, and shelf-edge canyons

�! Small-scale shelf relief elements consist of low relief features  i.e., less than
9,144 meters �0 feet!! of probable depositional origin, most notably ridge
and swale bathymetry and arcuate  e.g,, cape-associated! shoals
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Figure 9.� Three � dimensional computer projection of depth data.
 Used in preparation of frontispiece.!
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Figure 10. � Depths at which waves of different periods begin to be appreciably
affected by Virginian Sea Floor.

Whereas the origin of group �! features is directly related to a lowered sea level,
group �! features probably formed since the last rise in sea level under the present shelf
hydraulic conditions. The most recent eustatic sea level lowering reached its maximum
extent approximately 15 000 years ago on the Atlantic Continental Shelf. Eustatic sea

level has been within 1.8 meters � feet! of its present level approximately 30 000 to
35 000 years ago and for the last 4000 years  ref. 128!. However, tectonic events may
have severely altered this sequence of sea level changes in this area.  See refs. 141
to 143.!

Large-Scale Morphogeometry

Terraces.- The depths of the outer edge of the prominent shelf terraces determined

from an east-west profile along 37 latitude from the mouth of Chesapeake Bay out across
the shelf to Norfolk Canyon  from ref. 24! are given in table IV and depths of these ter-
races are compared with the depths of other prominent terraces along the East Coast shelf
given in reference 80. The most pronounced terraces adjacent to Chesapeake Bay are at
24, 30, 40, and 86 meters �8, 100, 132, and 282 feet!.

The presence of these terraces on the sea floor indicate a step-like bathymetric
profile. The effect of the steeper portions of the profiles on the incoming waves will
depend primarily on the angle of wave approach to these rises. However, even the steep-
est rises have relatively low-gradient slopes, The slope is 0 07'19" for the rise between
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TABLE IV.� DEPTH TO OUTER EDGE OF TERRACES ON

THE CONTINENTAI, SHELF AND SLOPE

Depth of outer edge of terraces, tn  ft!, at�
Cape Kennedy, Miami,

Fla. Fla,
 b!  b!

Savannah,
Ga.
 b!

Atlantic City, Onsiow Bay,
N,J. N.c,
 b!  b!

Martha's Vineyard.
Mass,

 b!

Chesapeake Bay,
va.
 a!

10 �3!

15 �9!7 to 18 �4 to 60!

16 �4!

24 �8!

30 �00!

20 �6! 18 �9!20 �6! 20 �6!
25  82! 25  82!

30  98!30  98!
33 �08!33 �08!

40 �31!

45 �48!
50 �64!,

55 �80!

35 �15!
40 �31!40 �31!

45 �48!
40 �31!

43 �41!40 �32!
50 �64!

57 �88! 55 �80!

63 �07! 62 �03!63 �07!
65 �13!67 �20!

�30!

�62!

7070 �30!

80 �62! 80 �62!�72!
�12!

80 �62! 8386 �82!
95

100 �28!106 �48!

aReference 24.

bReference 80, table 2.

depths of 87.8 and 62.2 meters �88 and 204 feet! as compared with a slope of 0 01'58"
for the total shelf landward of the depth contour of 62.2 meters �04 feet!.  See ref. 24.!

Subaqueous stream drainage.� Generally oriented perpendicular to the strike of the
terraces, the major relief features remaining from the Pleistocene stream drainage are
the shelf valleys at the mouths of Delaware and Chesapeake Bays.  However, Swift
 ref. 115! has suggested that the Delaware shelf valley is an estuary retreat path and not
a drowned river valley.! Both these southeast-oriented valleys have a pronounced influ-
ence on the wave refraction patterns, with areas of confused seas forming over the sea-

ward rim of the shelf valleys.

Most of the relict Pleistocene river channel network has been filled in with sedi-
ments. However, subtle changes in relief in solne areas of the shelf surface of the
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Virginian Sea are suggestive of former channels. Examples of these transverse shelf
valleys are found between the mouth of. Chesapeake Bay and Norfolk Canyon  Susquehanna
Valley!, from the Delaware Bay shelf valley to the shelf edge  Delaware Valley!, from the
Chesapeake Bay shelf valley southeastward to the shelf edge  Virginia Beach Valley!,
from the Oregon Inlet, N.C., vicinity southeastward to the shelf edge  Albemarle Valley!,
and from the Metomkin-Assawoman Island vicinity east-southeastward to Washington
Canyon. The valley names are adopted from reference 99. The dimensions and gradients
of these submarine canyons  from ref. 144! are compared in table V with subaerial
canyons.

TABLE V.� COMPARISON OF DIMENSIONS AND GRADIENTS OF CANYONS ABOVE AND BELOW SEA LEVEL

Daia from reference 144, pp. 122-123I

 at Dimensions

Mean
longitudinal
gra dr e nt i n

belt of
continental

Mean
longitudinal
gradient in
shelf area

1;33
1: 18

l.; 18

1; 20

1; 19

1 530  mes.n

1: 400  mean

Actual dimension is greater.

 b! Average longitudinal gradients of canyons  by groupst



Virginia Beach Massif.� Virginia Beach Massif, between the Susquehanna Valley and

the Virginia Beach Valley, is an extensive shallow, relatively level-topped topographic high

lying approximately between the depth contours of 18.3 and 21.9 meters �0 and 72 feet!.
 See fig. 1.! This imposing large-scale relict feature, of probable interfluve origin, con-
tains a superimposed irregular ridge and swale bathymetry, which is delineated by the

depth contour of 18.3 meters �0 feet!. The Virginia Beach Valley, flanked to the north-

east by the Virginia Beach ridges on the topographic high and to the southeast by the False

Cape ridges, is indeed suggestive of a series of relict ebb-tidal deltas formed as the sea

level rose and the estuary mouth retreated, as hypothesized by Swift, Kofoed, Saulsbury,
and Sears  ref. 99!.

This complex topographic high, originating as an interfluve feature, with subsequent
superimposed tidal-delta-associated ridges, that have been modified under the present
shelf hydraulic regime, has been named the Virginia Beach shoal retreat massif by Swift,
Kofoed, Saulsbury, and Sears  ref. 99!; this name has been adopted for this study.

Small-Scale Shelf Relief Elements

Linear ridges.- Superimposed on the larger relief elements is an undulating ridge

and swale bathymetry composed of shoals with less than 9.1 meters �0 feet! of relief,
with the long axis generally extending from 1 to 10 miles and oriented such that they form
a small angle  peak at 35o! with the present shoreline  ref. 145!. These shoals are
thought to have formed under the present shelf hydraulic regime because marked seismic
and grain-size discontinuities exist between the shoals and the underlying strata which

are generally older than 7000 years  refs. 145 and 146!. Moreover, the mineralogy and
granulometric characteristics of many of the shoals are often directly related to the
beaches along the adjacent shoreline  ref. 145!.

Linear ridges, separated by valleys called swales  ref. 80!, are most prominent
opposite the shorelines of Delaware and Maryland, the southern Delmarva Peninsula, the
Virginia-North Carolina state line, and Oregon Inlet to Rodanthe, N.C.

The depth and orientation of over 200 of the linear ridges on the U.S. East Coast
Continental Shelf is shown in figure ll  data from ref. 145!. Note the bimodal depth dis-
tribution with clusters of shoals at depths of 6.1 to 9.1 meters �0 to 30 feet! and 12.2 to
16.8 meters �0 to 55 feet!  and possibly a third mode at depths greater than 24.4 meters
 80 feet!!. These depths do not appear to be related to depths of prominent terraces;
instead, they may be related to depths at which the most frequent waves begin to apprecia-
bly interact with the sea floor.  Compare fig. 11 with figs. 5, 7, 8, and 10.! The right
histogram in figure 11 shows the azimuth distribution of the same 200 linear ridges, with
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Figure ll.- Depth attsi orientation of shelf linear ridges.  From ref . 12I5. !

major axis of the shoals having a mean azimuth  i.e., compass direction! of 32 . Two
modes are suggested at approximately 5 and 35, with a third mode possibly at -30
 i.e., 330o!.

Arcuate shoals.� The arcuate shoals are most prominent when associated with

capes such as within Chincoteague Shoals opposite the south end of Assateague Island,
Md. They are even more extensive immediately south of the study area, within Diamond
Shoals opposite Cape Hatteras, N.C. Arcuate shoals are also located opposite the mouths
of nearly all the inlets along the coast of the Virginian Sea. The formation of the inlet
shoals  i.e., ebb-tidal deltas! is related to the tidal-current-wave interaction, and they
often have an important effect on the nearshore wave refraction patterns  ref. 25!,

Probably the largest arcuate shoal in the study area is one associated with the
entrance to Chesapeake Bay. Though highly bisected and cut by tidal channels, the dis-
tinct convex-seaward arcuate shape of this intermittent sand body, encompassing the
mouth of the Bay, can be delineated from the detailed bathymetry. This huge sand body,
suggestive of an ebb-tidal delta, may also be directly related to the origin of linear ridges
adjacent to False Cape, Indeed, many of the linear ridges, especially those attached to
shore, as well as many of the arcuate shoals n3ay owe their origin, in part, to the forma-
tion of now relict ebb-tidal deltas.

STUDY RESULTS

Variations in Wave Behavior With Different Combinations of Input Parameters

Because of the very large number of combinations of wave direction, period, tide
and height input conditions, large variations in wave behavior may result in any particular
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portion of the shelf and along the shoreline, Also the large areal extent of the study
adds to the complexity of the voluminous data.  A detailed analysis of these data is in

progress.!

However, in spite of the complexity of the computer-generated data, certain definite
features and patterns of wave behavior are clearly displayed by the wave refraction dia-
grams  figs. Bl to 870!. One of the most notable of these patterns is a definite spatial
periodicity in wave energy distribution over the shelf and along the shoreline. This

periodicity results from the interaction of the ocean. waves with the numerous relief ele-

ments on the continental shelf. These shelf relief elements include the shelf-edge can-

yons  for 12-second or longer waves! such as Washington and Norfolk Canyons; shelf
valleys such as at the entrances to Delaware and Chesapeake Bays; ridge and swale

bathymetry, most notably adjacent to the Delmarva Peninsula and Virginia Beach, Va.;

and shore-connected northeast-oriented ridge systems such as Bethany Beach, Del,;

False Cape, Va.; and Rodanthe, north of Cape Hatteras, N.C.

The resultant shoreline wave energy distribution varies with wave approach direc-

tion, wave period, stage of the tide, and changes in sea level from the inverse barometric
effect associated with moderate to severe storms. This spatial variation in wave energy

distribution  i.e., alternate zones of wave energy concentration and diminution! also varies
directly with the period of the incoming waves. For waves of 6 to S seconds, these peri-
odic zones are 1 to 5 n. mi, in length along the shoreline, and for waves of 12 to 14 sec-

onds, these zones may be 15 to 25 n. mi. in length. The variations in the widths of these

zones appear to be related to the distance from shore that the waves begin to interact with

the shelf relief elements, This spatial wave energy distribution along the shoreline will
affect the morphology and the long-term erosional history of the shoreline. Obviously,
documentation of these trends needs to be undertaken in any shoreline planning.

Ocean-Wave � Continental-Shelf Interaction

Shelf-edge canyons.� Norfolk and Washington Canyons head at depths of approxi-

mately 87.S and 73.2 meters �88 and 240 feet!, respectively. They, therefore, appear to
have an important effect on waves with periods of 12 seconds or greater. These effects

are twofold:

 l! Re1ativeiy decreased concentration of wave energy downwave from the canyons

and the creation of a shadow zone of low wave energy along the shore about

20 n. mi. in length due to a divergence of the wave rays

�! Greater wave energy on either side of this shadow zone as a result of the con-

vergence oi' the wave rays refracted away from the shadow zone

These effects have been noted by Munk and Traylor  ref, 147! along the CaIifornia shore-

line where, because of the closeness of the canyons to shore, the effects are more



discernible. Though apparent for 12- and 14-second waves from all directions  see
diagrams in appendix B!, the effects of the canyons on the waves will vary with wave
approach direction because of additional wave-shelf interaction in the downwave direc-
tion. An example of this is the shoreline ei'feet of Norfolk Canyon, which for northeast

waves is slight because of additional refraction but much more noticeable for east-
northeast and east waves. The shadow zone moves north along the shoreline a.s the wave

approach direction moves south; the Norfolk Canyon shadow zone moves from the False
Cape vicinity to Virginia Beach and then to the Chesapeake Bay entrance and Smith Island,
with the wave approach direction changing from northeast to east-northeast to east,

respectively.

Shelf valleys, � Two of the larger shelf valleys are located adjacent to the mouths
of Delaware and Chesapeake Bays and display a southeast orientation. The Delaware
Shelf Valley has appreciably more relief and steeper sides than the Susquehanna Shelf
Valley  fig. 1!. Like the shelf-edge canyons at the seaward side of the shelf, these relict
features were probably formed by subaqueous stream processes when sea level was
lower. Present interaction with the shelf valleys results in one of the most important

effects of wave-shelf interaction, that is, the development of confused seas over the sea-
ward margin of these valleys. This effect is due to landward moving waves encountering
an abrupt increase in depth and is most dramatically illustrated for the Delaware Valley
by 12-second waves from the south-southeast, As can be readily seen in the diagrams

 appendix B!, subtle changes in wave approach direction and wavelength will drastically
alter the "strength" of the confused sea, which is referred to technically as a straight
caustic. Straight caustics have been demonstrated in a wave tank and described theoreti-
cally by Chao and Pierson  rei'. 41!. The concentration of wave energy from southeast
swell  as exemplified by increased wave heights! along the seaward side af the Delaware

Valley may have been observed and photographed by LaRC personnel in August 1973.

Ridge and swale bathymetry.� Originally described by Uchupi  ref. 80!, the detailed
morphology and suggested processes of origin and maintenance of these ridges has been
recently summarized by Duane, Field, Meisburger, Swift, and Williams  ref. 145!. A
mechanism for maintenance of these ridges by present wave processes has been sug-

gested by Goldsmith  ref. 31!, in which wave refraction around a topographic high would
cause the sediment to be redeposited downwave from the high  fig. 12!, Thus, such ridges

would have their long axis oriented parallel to the wave rays from the dominant wave
approach direction, as is the case for most of the ridges on the shelf.

Irrespective of the genetic mechanism of this ridge and swale bathymetry, an
examination of the wave refraction diagrams clearly shows that this bathymetry has the
most significant overall effect of any of the shelf relief elements on the ocean waves. As
a result of wave refraction over this regular ridge and swale bathymetry, alternating
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zones of relative wave energy concentra-

tion and diminution are produced downwave

from this bathymetry, both over portions

of the shelf and along the shoreline.

7 I 0 Il>u

r'Lc< rmioi

An example of the effects of these

offshore shoal areas on nearshore cir-

culation patterns can be seen in the

vicinity of Virginia Beach, Va., which is

greatly affected by the adjacent, extensive Virginia Beach Massif. Here, the waves with
periods of 10 seconds or shorter from the north-northeast, northeast, and east-northeast

are, for the most part, refracted away from the resort area by the Virginia Beach Massif
to the Chesapeake Bay entrance and the Back Bay-False Cape area. In a similar manner
waves from the east-southeast, southeast, and south-southeast are concentrated in the
Virginia Beach and adjacent offshore area. These phenomena result in the dominant
northward longshore drift observed in the Virginia Beach area; this might be because
greater wave energy reaches the area from the southern quadrants than from the north,
resulting in a net nearshore sediment transport to the north. Harrison, Brehmer, and
Stone  ref. 14S! suggested that the observed northward sediment t.ransport in the Virginia
Beach area was due to a large nontidal eddy related to the circulation originating at the
mouth of the Chesapeake Bay. It should therefore be noted that both effects may be

occurring and that neither the wave or current-induced circulation patterns are mutually

exclusive.

Shoreline Wave Energy Distribution

Shore-connected linear ridges.� Of critical importance to the final shoreline wave

energy distribution and intimately related to shoreline changes, are the several series of

Shoals, banks, and massifs. � Exten-

sive shoal areas, forming topographic

highs on the shallow continental shelf, will

also greatly affect incoming wave patterns.

Such areas are found offshore from Ocean

City, Md.  Gull Banks and Fenwick Shoals!,
the south end of Assateague Island, Md.

 Chincoteague Shoals!, Parramore Island,

Va.  Parramore Banks!, Virginia Beach to

False Cape, Va.  Virginia Beach Massif!,
and Oregon Inlet and Rodanthe, N.C.  Platt

and Wimble Shoals, respectively!.

Figure 12.� schematic illustrating a mechanism
proposed to explain growth and maintenance
of linear ridge on shelf and its effect on
wave energy distribution along shoreline,
 From ref. 3! ~ !



shore-connected linear sand ridges, which, like the linear ridges offshore, generally have
their long axes alined to the northeast. Extensive shore-connected ridge systems are
found off Bethany Beach, Del.; False Cape, Va,; and Oregon Inlet to Cape Hatteras, N,C,

Moody's hand-drawn refraction diagrams for the Delaware ridges  ref. 149! indi-
cated shoreline wave energy concentrations over the ridge crests for all common wave
approach directions. These concentrations were apparently substantiated by Moody with
measurements of the irregular beach changes at Bethany Beach following the March 1962

stor m.

Vincent  ref. 150!, in a very detailed statistical analysis of shoreline meanders
along the Rodanthe-Cape Hatteras shoreline, found a definite relationship between the
Rodanthe shoreline rhythms and the adjacent ridge and swale bathymetry, which could be

related through the wave refraction patterns.

Though the detailed wave refraction patterns over these ridge systems are smaller
than the scale of these diagrams, it is significant with respect to hypotheses advanced
concerning the origin of these shoals in reference 100 to note that the shorelines of all
three of these ridge systems are areas of above average wave energy concentrations
from many different directions. These concentrations are most apparent for waves with
periods of 8 seconds from the northeast and southeast and to a lesser extent for waves

with periods of 6 and 10 seconds from these and other directions.

A second-order grid of the area offshore from southeast Virginia is now being
examined in some detail at VIMS to determine the wave refraction patterns over the

False Cape ridge system.

Inlets and wave energy concentrations.� There are definite shoreline areas with
pronounced wave energy concentrations for several wave approach directions. Two of
the most obvious examples are the False Cape area and the Chesapeake Bay entrance.

This concentration appears to be a direct result of the extensive Virginia Beach Massif
which is relatively shallow, 18.3 meters �0 feet! deep, and close to shore �0 n, mi.!.
Present studies are following these waves into Chesapeake Bay in order to study the
resulting refraction patterns and delineate the contribution of these ocean waves to the

wave climate of the Bay.

One of the more intriguing results of the present study is the close proximity of
the coastal inlets and the shoreline areas of wave energy concentration; this suggests a

causal relationship. This relationship is especially true for the numerous inlets of the

southern Delmarva Peninsula  e.g., Wachapreague Inlet! and for Oregon Inlet; thus, the
inlets may owe their existence, in part, to wave action because the inlets are in areas of
wave energy concentration. Also related to this is the apparent spacing of wave energy
concentrations for waves with periods of 8 and 10 seconds for various direction", which

is remarkably close to the spacing of the inlets. This shoreline spacing, as indicated by



the convergences of wave rays, is directly related both to the depth and relief of the
various shelf elements and the length of the waves that would be most directly influenced
by these relief elements. The relatively shallow, wide shelf helps to emphasize these
relief elements. The slight wave refraction of waves with periods of 4 and 6 seconds
and the abrupt increase in refraction for waves with periods of 8 seconds and longer, for
all wave approach directions, is clearly related to this morphogeometry of the shelf.

An excellent example of the regular periodicity that can result from the ridge and
swale bathymetry is shown in the wave refraction diagrams  figs. B38, B20, and B26! for
waves with periods of 10 seconds from the southeast for the North Carolina shoreline and
from the east-northeast and east for the Kastern Share of Virginia. Here, shoreline
zones of wave ray divergences and convergences alternate at approximately intervals of
5 n. mi. A detailed study has been made of such alternating zones of wave energy along
20 n. mi. of shoreline off the southern Delmarva Peninsula  ref, 25!. A noteworthy cor-
relation was observed between observed rates of shoreline erosion since 1852 and areas

of wave energy concentrations as computed in this second-order Virginian Sea Wave
Climate Model  fig. 13!.

Other areas of relatively high shareline wave energy concentrations for specific
wave conditions are between Indian River Inlet, Del., and Ocean City, Md.; the south end
of Assateague Island near the Virginia-Maryland state line, Cobb Island to Smith Island,
Va.; and Corolla to Kitty Ha.wk, N.C.

Thus, shoreline wave energy concentrations are formed by wave refraction over
the various shelf relief elements. The location and spacing af these shoreline zones of

wave ray convergences and divergences will depend on

�! The wave approach angle

�! The size and extent of the adjacent shelf relief' elements

�! The distance from shore and depth of these relief elements

�! The regularity and rhythmic nature of the relief elements

�! The interaction of wave refraction patterns from more than one set of relief
elements

Prediction of Shoreline Changes

Figure 13 illustrates the surprisingly strong correlation near Wachapreague Inlet,
Va.  between Cedar and Parramare Islands! between shoreline variations in measured
rates of erosion between 1852 and 1934 and areas of wave energy concentrations in 1852

determined by using 1852 bathymetry as input data. The three wave energy peaks for the
1852 erosional waves with periods of 4 seconds show a strong correlation in both location
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Figure 13. � Historical shoreline changes along the Eastern shore of Virginia compared
with changes in shoreline wave energy distributions. 1852 to 1934.
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and magnitude with the three areas of shoreline erosion. Also, the three wave energy
peaks for the 1934 accretional waves with periods of 12 seconds show a similar correla-
tion with the three areas of shoreline accretion. In each of these two cases, the amounts

of erosion are also directly related to the magnitude of the computed wave energy. Coin-
cident with the irregular shoreline changes that resulted in the increased development of
the offset inlets, the shoreline wave energy for the waves with periods of 4 seconds tended
to become more evenly distributed along the shoreline between 1852 and 1934, Therefore,



one might be emboldened to predict that when the alongshore shoreline wave energy dis-
tribution becomes evenly distributed, the inlet offsets will cease grov ing and rates of
shoreline erosion and accretion will become more evenly distributed along the shore.

Thus, by this evaluation of historical wave conditions based upon historical shore-
line and bathymetric data, changing shoreline wave energy distributions with time  as a
reflection of offshore bathymetric changes! can be delineated, and predictions can then
be made of future shoreline and nearshore changes. Therefore, the usefulness of the
VIMS-LaRC Wave Climate Model is not limited to present conditions, but the model is a.
valuable tool which can also be utilized in understanding the past in order to predict the
future wave energy distribution over the sheLf and along the shoreline,

Tidal Effects

In order to test the effect of changing water level on these refraction patterns,
1.2 meters � feet! were added to each of the depths and the waves from the northeast,
east, and southeast were recomputed.

In general, for the east and southeast directions the wave rays are less concen-
trated along the shore for high-tide conditions, though the areas of wave energy concen-
tration are not significantly different for equivalent low- and high-tide conditions, For
waves from the northeast the situation is more complex, with some significant changes
between low- and high-tide conditions involving focusing of wave ray convergences and
changes in the locations of this focusing of up to 2 or 3 n. mi, along the shore.

APP LICATIONS

An important aspect of this applied research supported in part by the NOAA Sea
Grant Program is the concomitant development of applications for the new research
technology,

The presentation and analysis of the data. derived from the VIMS-LaHC Wave
Climate Model further substantiate the general recognition that ocean wave refraction
plays a dominant role in controlling the distribution of wave energy over the continental
shelf and along our coasts; furthermore, these data illustrate how knowledge of a specific
refracted wave input at a site is critical to the successful implementation of shoreline
defense programs, knowledge of continental shelf sedimentation processes, and construc-
tion and maintenance of coastal and offshore structures, Thus, a number of agencies
have interests in the continental shelf waters  e.g., VIMS, NASA, V.S. Army Corps of
Engineers, NOAA, Environmental Protection Agency, Geological Survey, Fish and Wildlife
Service, Virginia Marine Resources Commission, Commonwealth Division of Planning and

Equivalent to a spring tide over most of the area.

41



Community Affairs, and Virginia Highway Department! and are potential users of informa-

tion from analytical wave models such as the VIMS-LaRC Wave Climate Model. Also,

industries which may benefit from wave predictions on the shelf include shipping, oil,

1'ishing, and r ecreation.

Although the present model is limited to a first-order linear approach, it is an

invaluable took for the scientific understanding of a number of shelf processes. Addi-

tional experimental verification of this model  or an improved version! offers the oppor-
tunity for a variety of additional potential uses.

Advances in analytical modeling may be expected to interact with technology

advances from other areas of science, Although all potential uses cannot be defined,

major categories of specific long-term applications discussed in this section are

�! advanced coastaL wave forecasting, �! improved environmental quality, and �! data

supply for government, industry, and other scientific disciplines.

Advanced Coastal Wave Forecasting

Considerable potential exists for the application of continental shelf wave refrac-

tion modeling for the improvement of marine forecasts of wave heights over the continen-

tal shelf. Two major approaches to this problem are discussed: �! the continental shelf

modeling may be incorporated into existing Weather Service forecast techniques or �! it

could become part of the data analysis procedure for future satellite systems,

The present NOAA nrarine forecasting technique  ref. 151! utilizes the National

Meteorological Center  NMC! 1977-point grid systerrr for the prediction of wind-generated
waves and swell, Computations are made at each grid point spaced 180 n. mi. apart.

Wave forecasting techniques applicable to the deep ocean are used in these computations.

Wave-height contour charts are then derived based on values at each grid point over the

entire North Atlantic Ocean. Because of the large grid spacing and utilization of deep-

ocean computational methods, the present forecast system has limited application to the

continental shelf regions where bottom topography modifies ocean swell characteristics.

It is reasonable to expect that wave refraction models of small areas of the continental

shelf could be incorporated within the large-scale NMC grid squares in coastal regions.

Output  height, period, and direction! from the NMC grid could be smoothed and input to

the refraction model which in turn would predict height distribution in finer detail over

the continental shelf region. This same procedure is essentially followed for a smaller

geographic region in reference 42,

An alternative approach to more accurate wave forecasts would be to utilize a sys-

tem similar to the prospective Seasat oceanography satellite  ref. 152! coupled to the

wave refraction model by using rrricrowave instrumentation for all-weather capability.

Deep-ocean wave directional spectrum data could be input to the refraction model for
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prediction of continental shelf swell conditions. Wave spectra and/or wind data could be
used to predict wind-generated wave height distribution. Recent successes in monitoring
wave and wind characteristics with microwave instrumentation  refs. 153 to 155! give
encouragement that such advances are possible. Harrison and Green  ref. 156! show that
satellite orbits are passible which maximize oceanographic and wind observations in the
coastal zone.

As the continental shelf regions of the United States are subject to increased utili-
zation, there will be a need for more detailed wave forecasts over the region just as
detailed meteorological forecasts are now required around airports. A study by Pierson
in 1972  ref. 23! has shown that wave reiraction effects over high-relief bathymetry in
the North Sea could have been directly related to the sinking of two fishing boats. A sim-
ilar experience may have been encountered by Florida fishermen off Cape Charles, Va.,
in December 1973  ref. 157!. Coping with the natural weather and sea environment is
probably the largest single problem in offshore operations  ref. 158!. It is clear that as
advanced marine prediction systems are developed, large-scale analytical wave refrac-
tion modeling will play an increasingly important role,

Improved Environmental Quality

Although prediction oi' surface wave conditions is of obvious value to offshore oper-
ations, this same capability has important impact or> the ability to analyze a number of
environmental problems. The ability to analyze and predict shoreline changes caused by
either natural or manmade bathymetry changes on the shelf has been discussed in the
section "Study Results." Prediction of surface wave conditions also has potential impact
on ocean dumping operations, For products categorized as liquid wastes, it has been
suggested that disposal sites be selected which allow rapid dispersal near the surface.
This implies that it may be desirable to dump these products in a region with high sea
state where turbulent mixing is high, Thus prediction of weather and wave conditions
couid be used to vector dumping vessels to high energy regions of the shelf.

A theoretical study utilizing second-order Stokes wave theory  ref. 159! suggests
that wave-induced currents may, under some conditions, be the same order of magnitude
as wind-driven currents on the Mid-Atlantic Continental Shelf. This suggestion has
important implications concerning the transport of pollutants both on the surface and at
depth in shelf waters. Predictive capability of the bottom currents is particularly impor-
tant to site selection i' or disposal of both inert and degradable solid wastes. Surface cur-
rent conditions are important for prediction of oil-spill movement. Close to land, wave-
induced longshore currents are important to the transport of effluents of sewage outfalls.
One method for monitoring shelf' circulation  noted in ref. 159! may be the application of
wind, wave, and Gulf Stream data from remote sensors to analytical circulation models



which would calculate both surface and subsurface currents. Such modeling should

include wave refraction calculations as well as geostrophic balance, wind stress, salt

balance, thermal balance, and fresh-water runoff,

Data Supply for Government, Industry, and

Other Scientific Disciplines

As frequent, all-weather wave observations beconie available froni systems such as

the planned Seasat satellite, a greater scientific understanding of wave conditions on the

continental shelf will evolve. This understanding will enable more sophisticated analyt-

ical models. For example, it may be possible one day to transform wave directional

spectra statistics taken at one location to another location through a series of verified

refraction calculations. Such operations could reduce the need for wave gage installation

and long duration measurement periods at sites of proposed offshore construction  such

as is now underway on the New Jersey coast!,

With respect to direct application of the Virginian Sea Wave Climate Model to oil-

spill problems, recent studies indicate that the spread of oil on the sea surface is a com-

plex problem, with the oil movement mainly a function of the direction and velocity of the

surface winds and tidal currents  ref, 160!, Sonu, Murray, and Smith suggested in refer-
ence 161 on pages 17 and 18 that wave action was an important factor in the spread of oil

under sea. conditions inasmuch as wave action affected mixing in the v ater layer which in

turn influenced vertical eddy viscosity and, hence, the vertical velocity prof'ile. There-

fore, although this model may be somewhat Limited in its ability to predict the movement

of oil, it could be combined with other models  discussed previously! and contribute basic

data on swell conditions and areas of potential confused seas, especially in crisis

situations,

If data derived from either the present VIMS-LaRC Wave Climate Model or more

sophisticated versions are used, more rapid definition of engineering specifications,

appropriate legislation, insurance acturial data, and environmental impact effects may be

possible. Such information is necessary for the correct management of environmental

resources. For example, accurate knowledge of shoreline wave energy distributions is a

must in defining coastal setback lines such as that Legislated in 1971 in Florida  ref. 162!,

By using deep-water wave conditions from Marsden square or hindcasted storms,

data from the VIMS-LaRC Wave Climate Model for specific wave conditions can be put

into a statistical representation of shoreline wave energy distribution. Risk factors can

then be developed by combining these data with probabilistic descriptions of storms  i.e.,

frequency and intensity!. Such data should be of great interest to insurance companies

and aid in the formulation of setback lines,
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These wave data may be used specifically to assist in the analysis of the distribu-
tion of the sediments of the sea floor of the Virginian Sea. In a detailed study conducted
by Nichols  ref. 104!, these sediments displayed large grain-size variations on the shelf.
Comparison of a detailed grain-size distribution map prepared by >Vichols, with a shelf

wave energy and bottom wave scour "map,' contoured for a variety of wave conditions,
should provide valuable information as to the causes of the grain-size distribution  i.e.,
relict processes and or modern hydraulic processes!. If a comparison suggests a rela-
tionship between the grain-size and wave ener y distributions, then the wave data can be
used to suggest areas for future sediment sampling in order to further test the hypothesis.
Thus, it is clear that regional-size banks of data concerning wave orbital velocities and
wave-induced current.s will provide beneficial information to scientists in other
disciplines,

CONC LUDING REMARKS

A Wave Climate Model for the Mid-Atlantic Continental Shelf and shoreline encom-
passing 20 000 square n. mi. and 200 n. mi. of shoreline has been computed for 122 dis-
tinct wave and tidal conditions. Computations of 19 wave parameters along more than
30 000 wave rays have resulted in the generation of over one million pieces of useful data,
which will be used as

 a! A data bank of useful wave inforniation available at the Virginia Institute of
Marine Science  Gloucester Point, Va. 23062! to user agencies, other officials,
and companies involved with the development and use of the continental shelf
and shoreline

 b! A source for additional, more detailed analyses. such as testing of proposed
modifications prior to initiation of projects

 c! Input to smaller closer spaced near-shore grids

 d! The nucleus for an early warning system from severe storm events for coastal

The most important wave process on the continental shelf is the interaction between
the ocean waves and the various shelf relief elements. This process results in nonuni-
forrn wave energy distributions over the shelf and along the shoreline. Detailed analyses
of these ocean-wave � shelf interactions for specific shelf and shoreline areas should
provide valuable input for the understanding of the present processes, the past develop-
ment, and future changes of the continental shelf and coastal geomorphology.
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SUMMARY OF MAP PROJECTION CONSTRUCTION

By Norman T. Carpenter

Clark University Cartography Laboratory

Worcester, Massachusetts

Construction of the Map Projection

For the construction of the map projection, a grid of 0.0508-meter �-inch! squares
was scribed on Keuffel 0 Esser 0.127-millimeter �.005-inch! scribing film, 2.74 meters
�08 inches! long and 1.016 meters �0 inches! wide. The measurements were made by
surveyor's metal tape for intervals of 0.3048 meter  I foot! or more and by draftsman' s
scale for shorter intervals,

The center intersection on the grid was designated the origin of a rectangular coor-
dinate system, with the ordinate parallel to the long dimension of the grid. The origin
was designated lat. 37 N, long. 75 W in the geographic grid. A computer program
 ref. 62! calculated abscissa and ordinate values in inches for intersections at 10-minute

intervals of latitude and longitude, based on the sphere of equal area, radius equals

6 370 997 meters �440 n. mi.!. The intersections were plotted by hand and connected
by scribed interrupted lines. The estimated accuracy of location of all intersect ans is

within 0,508 millinieter �.02 inch!,

A positive contact print made from the original scribe coat was measured. The
grid on this print, made on a stable-base material, is 2.75 meters �08.1 inches! long
and 1.0168 meters �0.03 inches! wide, an expansion of about I/10 of I percent. The

diagonals oi the grid were equal: no deviation from rectangularity could be measured.

The nominal scale of the projection is 2.54 centimeters  I inch! equals 2.5 n. mi.,
or I: 180000. Variations in this scale are discussed in the following section.

The map extends from latitude 35 to 39 N and from longitude 74 to 76 W, With

no change in the present map, the projection can be extended in any direction.

Sca.le Factor

Scale factor is the terna used to define the variation in areal exaggeration of a pro-

jection, Since the scale of the projection is I: 180000, it corresponds to a globe I/180000

the size of the sphere of equal area to the Earth. All distances along the standard line

5For the map projection construction, I n, mi. = 1852 meters �076 feet!; .'or the
example in this discussion, 1 n, mi. = 1829 meters �000 feet!.
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are exactly the same on both globe and map. Leaving the standard line, distances are
slightly grea.ter on the map than on the globe, so that in the actual scale. the denominator
is slightly less than 180 000. The scale factor is equal to the denominator of the nominal
scale, or 180 000, divided by the denominator of the actual scale. The difference in scale
is not great on this map. On the standard line, 75o, the scale factor is 1.0000 and
2,54 centimeters � inch! equals 4572 meters �5 000 feet!; 50 n. mi. east or west from
the standard line, the scale factor is 1.0001 and 2,54 centimeters � inch! equals
4571.5 meters �4 99S.5 feet!.  See fig. 1 of ref. 55.!

Convergence

A projection is conformal when the angular relationships are the same at any point
on the map as at the corresponding point on the Earth; therefore, conforrnal maps a.re
used in navigation and surveying. The price of conformality is area exaggeration, but
that is no problem in the limited extent of the UTM. However, it should be understood
that while all directions are true at a point on the UTM, they vary from one point to the
next, There are two characteristics of the projection to consider in connection with
direction and the measurement of azimuth.

First, on this map the latitude and longitude lines have been superimposed on a
square grid, which is more convenient to use, since locations can be expressed in
Cartesian coordinates and directions expressed in plane trigonometry, The grid direc-
tion parallel to the central meridian is called grid north GN. However, grid north is the
same as true north only on the central nreridian and on the equator. The angle between
grid north and true north is called the convergence. and it increases with distance from
the central meridian and vith distance from the equator. On this map it amounts to less

than 1o.

Second, except for the centr'al meridian and great circles at right angles to it, a
straight line on the Earth's surface is not a straight line when projected on the UTM, and
a straight line on the UTM does not pass through the sanre intermediate points as a great
circle between the corresponding end points on Earth, This difference is greatest for
north-south lines, increasing with distance from the central meridian, but it is slight on
this projection. Take the two points 35 N, 74 W and 39 N, '74 W, A straight line on
the Earth's surface between these points is, of course, the meridian 74 itself, The
meridian is a curve on the map and at its midpoint, 3'7 N, it deviates from a straight
line by 0,302 millimeter �.0119 inch! or 54.5 meters �78,5 feet! on the Earth. Also,
a straight line drawn on. the map tangent to the meridian at 39 N, 74 W would cross
35o N about 1.21 millinreters �.0478 inch! from the meridian �1S.5 meters �1'7 feet!
on the Earth's surface!.
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WAVE REFRACTION DIAGRAMS

Included in this appendix are 70 wave refraction diagrams  figs. Bl to 870! com-
puted for the 122 wave input conditions listed in table I. Because linear wave theory was
used, computations for initial wave heights of 0.6 and 1.8 meters � and 6 feet!, with
otherwise identical input conditions, will give identical refraction diagrams; therefore,
the initial wave height was 0.6 meter � feet! for all diagrams shown.  To convert val-

ues of depth contour from feet to meters, multiply by 0,3048.! The conditions for the
70 refraction diagrams are given in the following index.'
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Figure 81.� 4'ave rays computed with following input conditions:
A7. = Oo; T. = 4 sec; Tide = 0.
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Figure 32.� Vn«u r nys < omputa<l with fallowing input «.~n<iit tons:
A'i = Oo; '7 = h sea; I:i<je = 0.
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Figure 83.� Wave rays < omputed with following input conditions;
AZ = Oo; 'I' = 8 sec; Tide = 0.
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Figure 85.� Wave rays computed with following input conditions;
AZ = 22.5 ; T = 0 sec; Tide = 0.
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Figure 86.� I<ave rays computed with following input conditions:
AZ = 22.5 ; T = 6 sec; Tide = 0.
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Figure 37.� t~ave rays computed with foIlowing input conditions:
A7. = 22. >o; T = 8 sec; Tide = 0.
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Figure 88.� Rave rays computed with following input conditions;
/iZ = 22. 5o; T = 10 sec; Tide = 0.
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Figure H9. � Vave rays computed with following input conditions:
AZ = 22.5 ; T = 12 sec; Tide = 0.
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Figure BIO.� Weve rnys computed with inI lowing input conditions
A7. = 22. > ; T. = 14 sec; Tide = 0.
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Figure 311.� Wave rays computed with fallowing input conditions:
A7. = 45a; T = 4 sec; Tide = 0.

59



APPENDIx 8

I

/

Figurc B12.� tIiave rays c<>rnputed with following input conditions.
A7. = 45; 7 = 6 sec; Tide = 0.
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I:igure 7513.� l~'ave rays oomputed with followinp input oonditions:
A7 = 45"; T = 8 sec; Tide = 0.
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Figure. 814.� Wavr rays computed with following input conditions:
AZ = 45 ; T = 10 sec; Tide = 0.
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Figure H15.� Wave rays computed witli Collowinp, input conditions.'
AZ = 45; T = l 2 sec; Tide = 0.
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Figure 316,� [Cave rays computed with following input conditions:
AZ = 45; T = 14 sec; Tide = 0.
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Figure B17.� Wave rays computed with following input conditions:
AZ = 67.5 ; T = 4 sec; Tide = 0.
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Vigure 818.� Move rays comp»ted witli following input conditions:
AZ = 67.5; T = 6 sec; Tide = 0.
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Figure B19.� t~nve rays computed with following input conditions:
A/ = 67.5; T = 8 sec; Tide = 0.
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Figure B20,� Pave rays computed with following input conditions:
AZ = 67.5 ; T = 10 sec; TIde = 0.
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Figure B21.- 1v'ave rays computed with following input conditions.
AZ = 67.5o; T = 12 sec; Tide = 0.
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1'igure 822.� Wave rays computed with fallowing input conditions:
AZ = 67,5 ; T = 14 sec; Tide = 0.
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Figure B23.� Wave rays < emputed with Col 1<~wing input conditions:
,<.2 = 90'; I' = 4 sec; Tide = 0.

71



APPENDIX B

J I

Figure 824. � 4'ave rays computed with following input conditions:
Ai = '�0 ; T = 6 sec; Tide = 0.
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Figure H25.� Wave rays coIIIpjrt ed with Following input conditions:
AZ = 90 ; T = 8 sec; Tide = 0.
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Figuz'e 326. � lv'goo toys oorrrputud with followiny, inprrt cond it ion.-,
AZ = g0"; T = 10 sec; Tide = 0.
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Figure 827.� Nave rays computed witlI CollowiIig input conditions:
/IZ = 90 ; T = 12 sec; Tide = 0.
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Figure 828.� Wave rays computed with following input conditions:
AZ = 90o; T = 14 sec; Tide = 0.
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Pigure 829. � l~ave rays computed with following input conditions:
112. > ; T = 4 sco; Tide = n.o
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Viguto H30. � Vave rays computed with following, input conclitions;
Ai: = 112.5o; T =  j sac; Ti�7I = 0.
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Figure H'32.� Wave rays  <gm.puted with Eollowing input conditions:
A7 = 112.5 ; T = l0 sec; Tide = 0.
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Figure B33,� Wave rays computed with following input conditions;
AZ = 112. 5; T = 12 sec; Tide = 0.
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Figure H35. � Wave rays computed with following input conditions:
A . '= 1 35o; '1' = 4 sec; Tide = 0.
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Figure B36.� Wave rays computed with following input conditions
AZ = 135; T = 6 sec; Tide = 0.
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Figure B37.� Nave rays computed with following input conditions:
A7. = 135; T = 8 sec; Tid/ � 0.
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Figure 838.� Wave rays computed with following input conditions:
AZ = 13>o; T = 10 se.c; Tide = 0.
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Figure H39. � tv'ave rays comput ed with f ollowing input conditions:
A7. -- 135o; T = 12 sec; Tide = t!.
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I'igure B40,� Wave rays computed with tollowing input < orrditions:
A7. = 335o; T = 14 sec; Tide = 0.
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Figure B41. � Wave rays computed with following input conditions:
A7, = 157.5o; T = 4 sec; Tide = 0.
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Figu~e 842.� 4'ave rays co111p»ted with foI lowing input conditions;
AZ = 157.5o; T = 6 sec; Tide = 0.
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Figure 843.� W ve rays computed with following input conditions:
AZ = 157.5; T = 8 sec; Tide = 0.

91



APPENDIX B

?
?

I

r,
go'

1 I

+'

I ~ I

Figure BAG. � Wave rays computed with following input conditions:
AZ = ]57.5; T = 10 sec; Tide = 0.
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Figure E45. � Wave rays computed with foll. awing input conditions:
AZ = 157.5 ; T = 12 sec; Tide = 0.
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Figure B46, � i4ave rays computed with following input conditions:
A7. = 157.5o; T = 14 sec; Tide = 0.
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Figure 847. � iA>ve rays computed with following input conditions:
A7. = 180 ; T = 4 sec; Tide = 0.
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Figure B48. � Have rays computed with following input conditions:
AZ = 180 ; T = 6 sec; Tide = O.
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Figure B49.� Wave rays computed with following input conditions;
AZ = 180 ; T = 8 sec; Tide = 0.

97



APPENDIX B

1

II II
/I J /1

1I

 
II I

I J
  /

'1
I II

 

J

I/ 1 I '   1~ '5
/1 I 1

I

 
J

I

I11

I
I II

1

1
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A7, = 180; T = 1A see; Tide = 0.
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Figure 851. � Wave rays computed with fo11owing input cond i t ious .'
AZ = 180; T = 12 sec; Title = 0.
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Figure B52.� Wave rays computed with Following input conditions:
AZ = 180 ; I = 14 sec; Tide = 0.
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Figure B53.� Wave rays computed with following input conditions;
AZ = 45; T = 4 sec.; Tide = 1,2 m � ft!.
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Figure B54. � tJ/ave rays J-oJJJputed with following input conditions .'
A7, =. 45; T = 6 sec; Tide = 1,2 JJJ � ft!.
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Figure 355.� <Tave rays c<>mputed with following input conditions:
�I = 45o; T = 8 SeC; Tide = 1,2 m � ft!.
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Figure B56. � Wave rays computed with following input conditions:
AZ = 45o; T = 10 sec; Tide = 1.2 m � it!.
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Figure 857.� Wave rays computed with following input conditions:
AZ = 45o; T = 12 sec; Tide = 1.2 m � ft!.
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Figure B58. � 4lave rays computed with following input conditions:
AZ = 45 ; T = 14 sec; Tide = 1.2 m � ft!.
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Figure B59. � Nave rays computed with following input conditions:
AZ = 90 ; T = 4 sec; Tide = 1.2 m � ft!.
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Figure B60.� trave rays computed with following input conditions:
AZ = 90; T = 6 sec; Tide = 12 m � ft!.
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Figure 861. � Wave rays computed with following input conditions:
AZ = 90 ; T = 8 sec; Tide = 1.2 m � ft!.
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Figure B62. � Wave rays computed with following input conditions:
AZ = 90 ; T = lrI sec; Tide = 1.2 m � ft!.
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Figure B63. � Wave rays computed wIth following input conditions:
AZ = 90o; T = 12' sec; Tide = 1,2 m � ft!.



APPENDIX B

Figure 864.� Wave rays computed with following input conditions:
AZ = 90o; T = 14 sec; Tide = 1.2 m � ft!.
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Figure B65. � Wave rays computed with following i~put conditions:
AZ = 135 ; T = 4 sec; Tide = 1.2 m � f't!.
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Figure B66.� Wave rays computed with following input conditions
A/ = 135; T = 6 sec; Tide = 1.2 m � ft!.
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Figure B67.� Trave rays computed with following input conditions:
AZ = 135o; T = 8 sec; Tide = 1,2 m � ft!.
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Pigure B68.� Wave rays computed with fallowing input conditions:
AZ = 135 ; T = 10 sec; Tide = 1.2 m � ft!.
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Figure 869.� Wave rays computed with following input conditions.'
AZ = 135 ; T = 12 sec; Tide = 1,2 m � ft!.
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Figure 970.� Wave rays computed with following input conditions:
AZ = 135 ; T = 14 sec; Tide = 1.2 m � ft!.
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